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Abstract

Unigraphs are graphs uniquely determined by their own degree se-
quence up to isomorphism. In this paper a structural description for
unigraphs is introduced: vertex set is partitioned into three disjoint sets
while edge set is divided into two different classes. This characterization
allows us to design a new linear time recognition algorithm that works re-
cursively pruning the degree sequence of the graph. The algorithm detects
two particular graphs whose superposition generates the given unigraph.
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Figure 1: Relationships of inclusion among the subclasses of unigraphs.

1 Introduction

In this paper we deal with unigraphs [8, 10], i.e. graphs uniquely determined by
their own degree sequence up to isomorphism.

Unigraphs are a superclass including matrogenic graphs, matroidal graphs,
split matrogenic graphs and threshold graphs as shown in Fig. 1.

All these subclasses have been widely studied (e.g. see [1]) and many equiv-
alent definitions have been given. Here we will define these graphs in terms of
forbidden induced subgraphs.

A graph G = (V,E) is:

• threshold if and only if it does not contains P4, nor chordless C4 or 2K2

as induced subgraphs [3];

• split matrogenic (also called splitoid) if and only if it does not contain any
of the configurations in Fig. 2 nor any of their complements as induced
subgraphs [7];

• matroidal if and only if it does not contain any of the configurations in
Fig. 3 nor any of their complements as induced subgraph or a chordless
C5 as induced subgraphs [15].

• matrogenic if and only if it does not contain any of the configurations in
Fig. 3 nor any of their complements as induced subgraph [6];

A property P holding for a graph G = (V,E) is said to be hereditary if
P holds for all the induced subgraphs of G, too. It has been proved that
thresholdness, matroidality and matrogenicity are hereditary properties [11],
while unigraficity is not a hereditary property (see Fig. 4).

In [17], unigraphs are characterized following a decomposition theorem stat-
ing that any graph and any graphical sequence can be uniquely decomposed into
particular components with respect to a decomposition operation (see Section
3). This result, though very interesting from a structural point of view, does
not seem to immediately lead to an efficient recognition algorithm; nevertheless,
the author, in a private communication, observed that it is somehow possible to
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Figure 2: Some forbidden induced subgraphs of a split matrogenic graph.

Figure 3: Some forbidden induced subgraphs of a matrogenic graph.

restrict to unigraphs the algorithm presented in [16] that decomposes arbitrary
graphs using results from [17]. To the best of our knowledge, the only published
linear time algorithm for recognizing unigraphs is in [9] and works exploiting
Ferrer diagrams. On the contrary, it is possible to find linear recognition algo-
rithms for all the subclasses presented in Fig. 1 [3, 4, 6, 11, 12, 13, 14, 18]. In
this paper we generalize to unigraphs the pruning algorithm designed for matro-
genic graphs in [12] providing a new recognition algorithm for the whole class of
unigraphs. It is to notice that the proof of our theorem is not a straightforward
generalization of the proof presented in [12], as the latter one is based on the
heredity of matrogenicity while this property does not hold for unigraphs.

The algorithm is linear and has a completely different approach with respect
to [9], although works on the degree sequence, too. In particular, it partitions
the vertex set and the edge set into three and two disjoint sets, respectively, de-
tecting two particular graphs whose superposition generates the given unigraph.
This superposition allows us to interpret in a simplified way the unigraph’s struc-
ture. Indeed, also the algorithm for the recognition of matrogenic graphs [12]
provides a similar superposition that is exploited for solving other problems
(e.g. the L(2, 1)-labeling [2]). It is in the conviction of the authors that the
results presented in this paper will be useful for solving such problems, that are
NP-hard for general graphs, polynomially solvable for subclasses of unigraphs
and still unknown for unigraphs.

This paper is organized as follows: in Section 2 we recall some definitions
and useful known results; in Section 3 we resume the decomposition theorem for
unigraphs. Section 4 and 5 are the core of the paper and introduce a different
characterization for unigraphs and a new recognition algorithm for this class,
proving its linearity. Finally in Section 6 we address some conclusions.
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Figure 4: A unigraph whose induced subgraphs are not unigraphs: F and F ′

are both subgraphs of G and have the same degree sequence even if are not
isomorphic.

2 Preliminaries

In this section we will recall all definitions and known results that will be useful
in the rest of the paper.

We consider only finite, simple, loopless, connected graphsG = (V,E), where
V is the vertex set of G with cardinality n and E is the edge set of G with
cardinality m. Where no confusion arises, we will call G = (V,E) simply G.

Let DS(G) = δ1, δ2, . . . , δn be the degree sequence of a graph G sorted by
non-increasing values: δ1 ≥ δ2 ≥ . . . ≥ δn ≥ 0. We call boxes the equivalence
classes of vertices in G under equality of degree. In terms of boxes the degree
sequence can be compressed as dm1

1 , dm2

2 , . . . dmr
r , d1 > d2 > . . . > dr ≥ 0, where

di is the degree of the mi vertices contained in box Bi(G), 1 ≤ mi ≤ n. We call
a box universal (isolated) if it contains only universal (isolated) vertices, where
a vertex x ∈ V is called universal (isolated) if it is adjacent to all other vertices
of V (no other vertex in V ); if x is a universal (isolated) vertex, then its degree
is d(x) = n− 1 (d(x) = 0).

A graph I induced by subset VI ⊆ V is called complete or clique if any two
distinct vertices in VI are adjacent in G, stable or null if no two vertices in VI

are adjacent in G.
A graph G is said to be split if there is a partition V = VK ∪VS of its vertices

such that the induced subgraphs K and S are complete and stable, respectively
[5].

A set M of edges is a perfect matching of dimension h of X onto Y if and
only if X and Y are disjoint subsets of vertices with the same cardinality h and
each edge is incident to exactly one vertex x ∈ X and to one vertex y ∈ Y , and
different edges must be incident to different vertices (see Fig. 5.a).

The complement of a perfect matching of dimension h is called h-hyperoctahe-
dron (see Fig. 5.b).

An antimatching of dimension h of X onto Y is a set A of edges such that
M(A) = X × Y − A is a perfect matching of dimension h of X onto Y (see
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Figure 5: a. a matching of dimension 4; b. a 4-hyperoctahedron; c. an anti-
matching of dimension 4.

Fig. 5.c).

Given a graph G, if its vertex set V can be partitioned into three disjoint
sets VK , VS , and VC such that every vertex in VC is adjacent to every vertex in
VK and to no vertex in VS , then the subgraph induced by VC is called crown.

3 Decomposition of Unigraphs

In this section we state the exhaustive description of the structure of unigraphs
based on a decomposition theorem reducing a general graph to its indecompos-
able components [17].

3.1 Decomposition Theorem

Definition 1 Given a split graph F = (VK ∪ VS , E(F )) and a simple graph
H = (V (H), E(H)), their composition is a graph G = (V,E) = F ◦H defined
as follows:

- V = VK ∪ VS ∪ V (H)

- E = E(F ) ∪ E(H) ∪ {{a, v} : a ∈ VK , v ∈ V (H)}.

In other words, the edge set of the complete bipartite graph with parts VK

and V (H) is added to the disjoint union F ∪H (see fig. 6).

F H

G

Figure 6: A graph G as composition of graphs F and H .
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Theorem 2 An n vertex graph G, given through its degree sequence DS(G) =
δ1, δ2, . . . , δn is decomposable as F ◦ H, where F is a split graph and H is a
simple graph, if and only if there exist nonnegative integers p and q such that

0 < p+ q < n,

p∑

i=1

δi = p(n− q − 1) +

n∑

i=n−q+1

δi

and the degree sequences of F and H are δ1, . . . , δp, δn−q+1, . . . , δn and δp+1,

. . . , δn−q, respectively. If p and q do not exist, G is said undecomposable.

Iterating the decomposition proposed by the previous theorem, it is possible
to go on until indecomposable components are reached:

Corollary 3 (Decomposition theorem) Every graph G can be decomposed as a
composition G = F1 ◦ . . . ◦ Fc ◦ H of indecomposable components, where Fi,
i = 1, . . . , c are split graphs and H is a simple graph.

3.2 Characterization of Unigraphs

Before stating the characterization of unigraphs presented in [17] we highlight
that if G is a unigraph then even its complement G is.

If F = (VK ∪ VS , E) is a split graph, its inverse F I is obtained from F

by deleting the set of edges {{a1, a2} : a1, a2 ∈ VK} and adding the set of
edges{{b1, b2} : b1, b2 ∈ VS}. Observe that F I is not uniquely determined by
F , but it holds that if F is split and indecomposable then F I is split and
indecomposable, too.

In the following the definitions of some special graphs are recalled from [17]:

U2(m, s): it is the disjoint union of perfect matching mK2 and star K1,s, for
m ≥ 1, s ≥ 2 (see Fig. 7.a).

U3(m): for m ≥ 1, construct this graph fixing a vertex in each component
of the disjoint union of the chordless cycle C4 and m triangles K3, and merging
all these vertices in one (see Fig. 7.b).

Figure 7: a. U2(m, s); b. U3(m).

S2 = (p1, q1; . . . ; pt, qt): to obtain this graph, add all the edges connecting
the centers of l non isomorphic arbitrary stars K1,pi

, i = 1, . . . , t, each one
occurring qi times, where pi, qi, t ≥ 1, q1 + . . .+ qt = l ≥ 2 (see Fig. 8.a).
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S3(p, q1; q2): take a graph S2(p, q1; p+1, q2) where p ≥ 1, q1 ≥ 2 and q2 ≥ 1;
add a new vertex v to the stable part of the graph and add the set of q1 edges
{{v, w} : w ∈ VK , degVS

(w) = p}: the obtained graph is S3 (see Fig. 8.b).

S4(p, q): it is constructed taking a graph S3(p, 2; q), q ≥ 1, adding a new
vertex u to the clique part and connecting it by the edges with each vertex
except v (see Fig. 8.c).

Figure 8: a. S2(p1, q1; . . . ; pt, qt); b. S3(p, q1; q2); c. S4(p, q). For the sake of
clearness, the edges of the clique connecting vertices of VK are omitted.

It is easy to see that S2, S3 and S4 are split graphs, while U2 and U3 are
not.

We are now able to state the characterization theorem for unigraphs:

Theorem 4 [17] Unigraphs are all graphs of the form G1 ◦ . . . ◦Gc ◦G, where:

• c ≥ 0 if G 6= ∅ and c ≥ 1 otherwise;

• for each i = 1, . . . , c, either Gi or Gi or GI
i or GI

i , is one of the following
split unigraphs:

K1, S2(p1, q1; . . . ; pt, qt), S3(p, q1; q2), S4(p, q);

• if G 6= ∅, either G or G is one of the following non split unigraphs:

C5, mK2,m ≥ 2, U2(m, s), U3(m).

4 Unigraphs as Superposition of Red and Black

Graphs

In this section we present a characterization of unigraphs in terms of superpo-
sition of a red and a black graph. This result generalizes the one holding for
matrogenic graphs [12]. It is to notice that the proof of the following theorem is
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not a straightforward generalization of the proof presented in [12], as the latter
one is based on the heredity of matrogenicity while we know that this property
does not hold for unigraphs.

Theorem 5 A graph G is a unigraph if and only if its vertex set can be parti-
tioned into three disjoint sets VK , VS and VC such that:

(i) VK ∪ VS induces a split unigraph F in which VK is the clique and VS is
the stable set;

(ii) VC induces a crown H and either H or H is one of the following graphs:

C5, mK2,m ≥ 2, U2(m, s), U3(m);

(iii) the edges of G can be colored red and black so that:

a. the red partial graph is the union of H and of vertex-disjoint pieces

Pi, i = 1, . . . , z. Each piece Pi (or Pi, or P I
i or P I

i ) is one of the
following graphs:

K1, S2(p1, q1; . . . ; pt, qt), S3(p, q1; q2), S4(p, q),

considered without the edges in the clique;

b. The linear ordering P1, . . . , Pz is such that each vertex in VK be-
longing to Pi is not linked to any vertex in VS belonging to Pj ,
j = 1, ..., i − 1, but is linked by a black edge to every vertex in VS

belonging to Pj, j = i + 1, . . . , z. Furthermore, any edge connecting
either two vertices in VK or a vertex in VK and a vertex in VC is
black.

Before proving the theorem, we observe that the black graph cited in The-
orem 5 is a threshold graph according to one of the equivalent definitions pre-
sented in [11]. It is also worthy to be noticed that there is a basic difference
between a matching inside the red graph of a split unigraph and a matching
constituting the crown of a unigraph: the first one corresponds to a matching
whose vertices of one partition are connected in a complete subgraph; the sec-
ond one corresponds to an mK2. An analogous difference holds between an
antimatching inside the red graph of a split unigraph and an hyperoctahedron
constituting the crown of a unigraph.

Proof: Let us prove the ’if’ part, first. Items (i) and (ii) and the ordering
(iii).b. identify the decomposition in F ◦H where F is a split graph and H is an
indecomposable unigraph. Let us now consider graph F , i.e. G −H . For item
(iii).a F is the union of vertex-disjoint pieces connected by the black threshold
graph; it follows that F = F1 ◦ . . . ◦ Fc, where each Fi is a piece Pi plus the
black edges in the clique part. This is the crucial point that allows us to bypass
the lack of heredity of unigraphicity. So Theorem 4 holds and G is a unigraph.
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Concerning the ’only if’ part, observe that the edges added during the com-
position operation, together with the edges in the cliques of the split compo-
nents, induce a threshold graph. As G is a unigraph, items (i) and (ii) derive
from this observation and from Theorem 4 , while item (iii) is obtained from the
following coloring operation: color black all edges coming from the composition
operation, all edges induced by VK and all edges connecting VK and VC ; color
red all other edges. The elimination of the edges from the complete part of the
red pieces in item (iii) is necessary for avoiding that these edges are colored
both red and black. �

An example. In Fig. 9.a a unigraph is depicted, and its red and black
partial graphs are highlighted in Fig. 9.b and 9.c, respectively. In Fig. 9.b,
the pieces P1, P2 and P3 are S3(1, 2; 1), K1 and SI

2 (2, 2), respectively, and the
crown is a C5. In Fig. 9.c it is highlighted that the black graph is threshold.

VK

VS VC

VK

VS VC

VK

VS VC

(a)

(b) (c)

Figure 9: a. A unigraph; b. its red graph; c. its black graph.

Theorem 5 will lead to a consequent new algorithm that is the focus of next
two sections.

5 A Linear Time Recognition Algorithm for Un-

igraphs

We present a linear time algorithm that, given in input a graph G as degree
sequence dm1

1 , . . . , dmr
r , gives in output the red/black edge coloring if and only

if G is a unigraph. The algorithm exploits Theorem 5 and recognizes the pieces
of G by means of a pruning procedure.

At each step, the algorithm finds an indecomposable split piece Pi of G

according to part (iii).a. of Theorem 5. To do this, Theorem 2 is exploited,
so the first p and the last q boxes are checked. The algorithm proceeds on the
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pruned graph G−Pi represented by the sequence d
mp+1

p+1 , . . . , d
mr−q

r−q and iterates
these steps until either G is recognized to be a unigraph or some contradiction
is highlighted.

In order to detail the algorithm we need to know all the rules that must be
respected by any degree sequence dm1

1 , . . . , dmr
r corresponding to graph F ◦H .

For the sake of clearness, we prefer to present the algorithm first, postponing
the list of these conditions to the successive subsection.

5.1 The Recognition Algorithm

Algorithm Pruning-Unigraphs uses imax and imin as indices of the first and
last boxes of the current degree sequence. Three fundamental steps are high-
lighted: in the first one the crown is recognized if it exists, while the second
and the third ones are related to split components: step 2 considers piece K1

and step 3 deals with pieces S2, S3, S4. Observe that, in view of item (iii).a of
Theorem 5, each time a piece Si, i = 2, 3, 4, is considered, 4 conditions must

be checked, i.e. COND. Si, COND. Si, COND. SI
i and COND. SI

i , while if the
piece is K1 the conditions are simply COND. U (universal box) and COND. I
(isolated box).

ALGORITHM Pruning-Unigraphs

INPUT: a graph G by means of its degree sequence d
m1
1

, . . . , d
mr
r

OUTPUT: a red/black edge coloring if G is an unigraph, “failure” otherwise.

imax← 1; imin← r;n←
∑imin

j=imax mj ;
REPEAT
Step 1 (non split indecomposable component, i.e. crown)

IF imax = imin AND (COND. K2 OR COND.K2 OR COND. C5)
THEN color by red all edges of the crown;

n← 0;
ELSE

IF imax = imin− 1 AND (COND. U2 OR COND. U3 OR COND. U2 OR COND. U3)
THEN color by red all edges of the crown;

n← 0;
ELSE

Step 2 (universal or isolated box)
IF COND. U

THEN FOR i = imax + 1 TO imin DO
di ← di −mimax;

imax← imax + 1;
n← n−mimax;

ELSE
IF COND. I

THEN imin← imin− 1;
n← n−mimin;

ELSE
Step 3 (split indecomposable components)

IF COND. S3 OR COND. SI
3
OR COND. S4 OR COND. SI

4

THEN color by red all the edges of the split component but the edges of its clique;
FOR i = imax + 1 TO imin− 2 DO

di ← di −mimax;
imax← imax + 1;
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imin← imin− 2;
n← n−mimax −mimin −mimin−1;

ELSE
IF COND. S3 OR COND. SI

3 OR COND. S4 OR COND. SI
4

THEN color by red all the edges of the split component but the edges of its clique;
FOR i = imax + 2 TO imin− 1 DO

di ← di −mimax −mimax+1;
imax← imax + 2;
imin← imin− 1;
n← n−mimax −mimax+1 −mimin;

ELSE
IF mimax ≤ mimin AND there exists an x ≥ 1 s.t. COND. S2 OR COND. SI

2

THEN color by red all the edges of the split component but the edges of its clique;
FOR i = imax + x TO imin− 1 DO

di ← di −mimax − . . .−mimax+x−1;
imax← imax + x;
imin← imin− 1;
n← n−mimax − . . .−mimax+x−1 −mimin;

ELSE
IF mimax > mimin AND there exists an x ≥ 1 s.t. COND. S2 OR COND. SI

2

THEN color by red all the edges of the split component but the edges of its clique;
FOR i = imax + 1 TO imin− x DO

di ← di −mimax;
imax← imax + 1;
imin← imin− x;
n← n−mimax −mimin−x+1 − . . .−mimin;

ELSE
Step 4 (G is not an unigraph)

RETURN “failure”;
UNTIL n = 0;
color by black all the uncolored edges of G;
RETURN the red/black edge coloring of G.

An example. Although the details of the conditions will be presented in
the next subsection, we prefer to give here an example of the execution of the
algorithm, in order to help the reader to a complete comprehension of it.

Let 163, 124, 95, 52, 31, 21, 14 be the degree sequence of an input graph G. On
this sequence, COND. S3=true, hence B1 ∪B6 ∪B7 induce S3(1, 2; 1) (see Fig.
10).

Figure 10: The graph in input, where component S3(1, 2; 1) is highlighted.
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After the pruning operation, the new degree sequence is 94, 65, 22, 01 and
represents the graph in Fig. 11.

Figure 11: The graph in input after pruning component S3(1, 2; 1).

For this degree sequence, COND. I=true, and therefore B5 induces K1 ∈ VS

(see Fig. 11). After the remotion of this box (see Fig. 12), the pruned degree
sequence is 94, 65, 22 and on it COND. S2=true.

Figure 12: The graph in Figure 11 after pruning component K1 ∈ VS .

We deduce that B2∪B4 induces S2(2, 2), as shown in Fig. 12. The algorithm
prunes the sequence, producing graph in Fig. 13, corresponding to sequence 25,
that verifies COND. C5. It follows that B3 induces C5.

Also this sequence is pruned and the reduced graph is empty, hence the
algorithm successfully terminates recognizing that G is a unigraph and returning
a red/black edge coloring of it.

We observe that, if Step 1 of the algorithm never occurs, the recognized
unigraph is a split unigraph, while if only a sequence of Step 2 occurs, then the
recognized unigraph is a threshold graph.



JGAA, 15(3) 323–343 (2011) 335

B
3

Figure 13: The graph in Figure 12 after pruning component S2(2, 2).

5.2 List of Conditions for Recognizing Indecomposable

Parts

In this subsection we list which conditions the degree sequence dmimax

imax , . . . , dmimin

imin

must satisfy to guarantee that its first p and last q boxes identify one of the
indecomposable pieces. Remind that n =

∑imin

i=imax mi.
We will call each condition with the name of the graph that it identifies,

although in the algorithm we add the word COND. to each of them.

Indecomposable non-split graphs: These graphs, if they exist, identify the crown
(cf. item (ii) of Theorem 5) and hence are the last pieces to be recognized and
colored by our algorithm. Therefore, it must be imin = imax when H is either
a matching, or an hyperoctahedron, or C5, and imin = imax + 1 when H is
either U2(m, s), or U3(m), or their complements.

It follows the list of the conditions specifying the different possibilities.

• H = mK2,m ≥ 2
In view of the definition of matching, it must hold:

dimax = 1,mimax is even and mimax ≥ 4 (K2)

and in such a case m = mimax

2
.

• H = mK2,m ≥ 3
Easily, it must be:

dimax = mimax − 2,mimax is even and mimax ≥ 6 (K2)

and in such a a case m = mimax

2
. Observe that we have excluded m = 2

as, in this case, H = 2K2 = 2K2.

• H = C5(= C5)
In this case, we have:

dimax = 2 and mimax = 5 (C5)

• H = U2(m, s)
From the definition of U2, it follows:
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mimax = 1, dimin = 1, 2 ≤ dimax ≤ n− 3 and n ≥ 5 (U2)

and in this case m = mimin−dimax

2
and s = dimax.

• H = U3(m)
From the definition of U3 we deduce:

mimax = 1, dimin = 2, dimax = n− 2, n ≥ 6 and n is even (U3)

and in this case m = mimin−3

2
.

• H = U2(m, s)

mimin = 1, 2 ≤ dimin ≤ n− 3, dimin is even, dimax = n− 2 and n ≥ 5

(U2)

and in this case m = dimin

2
and s = mimax − dimin.

• H = U3(m)

mimin = 1, dimin = 1, dimax = n− 3,mimax is odd, n is even and n ≥ 6

(U3)

and in this case m = mimax−3

2
.

Indecomposable split graphs: In order to identify the indecomposable split pieces,
the algorithm considers separately the case in which Pi is K1, since in this case
only one box – either the first one or the last one – is involved.

• Pi = K1 in K

In this case the first box is universal:

dimax = n− 1 (U)

• Pi = K1 in S

In this case the last box is isolated and the condition is:

dimin = 0 (I)

In all the other cases of item (iii).a of Theorem 5, we have to check a larger
number of boxes in order to identify the corresponding indecomposable piece
Pi. For this reason, the conditions we will show in the following are given by
means of tables and may appear more complicate, although the way to compute
them follows the same simple analysis of the structure of the piece as before.

Moreover, in order not to overburden the exposition, when we speak about
one of these graphs (i.e. S2, S3 and S4) we refer also to their inverses, their
complements and the inverses of their complements, even if not explicitly un-
derlined.
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Pi d1 d2 d3

S3 p+ q1 + q2 q1 1

S3 p(q1 + q2) + q1 + 2q2 − 1 p(q1 + q2) + 2q2 p(q1 + q2) + q2 − p

SI
3 p(q1 + q2) + q1 + q2 p(q1 + q2) + q2 + 1 p+ 1

S3

I
p(q1 + q2) + q1 + 2q2 − p− 1 q1 + q2 − 1 q2

S4 2p+ 2q + pq + 2 p+ q + 3 2

S4 2p+ 2q + pq + 1 p+ q + pq 1

SI
4 2p+ q + pq + 2 2p+ q + pq p+ 1

S4

I
p+ 2q + pq + 2 q + 3 q + 1

Table 1: Values of di, i = 1, 2, 3 in the degree sequence of graphs S3 and S4.

Pi m1 m2 m3

S3 q1 + q2 1 p(q1 + q2) + q2

S3 p(q1 + q2) + q2 1 q1 + q2

SI
3 1 p(q1 + q2) + q2 q1 + q2

S3

I
q1 + q2 p(q1 + q2) + q2 1

S4 1 q + 2 2p+ q + pq + 1

S4 2p+ q + pq + 1 q + 2 1

SI
4 2p+ q + pq + 1 1 q + 2

S4

I
q + 2 1 2p+ q + pq + 1

Table 2: Values of mi, i = 1, 2, 3 in the degree sequence of graphs S3 and S4.

• Pi = S3(p, qq; q2) or Pi = S4(p, q)
In both these cases three boxes are involved. In Tables 1 and 2 values of
di and mi for these cases are reported. According to the structure of S3

and S4 they can be either the first one and the last two or the first two
and the last one.

In the first case, the indices 1, 2 and 3 of d in the tables correspond to
imax, imin−1 and imin, respectively, while in the second case, indices 1, 2
and 3 correspond to imax, imax+1 and imin, respectively. Consequently,
the following conditions α and β must hold in the first and second case,
respectively:

diminmimin + dimin−1mimin−1 =
mimax(dimax − n+mimin +mimin−1 + 1) (α)

diminmimin = mimax(dimax − n+mimin + 1)+
mimax+1(dimax+1 − n+mimin + 1) (β)

Tables 3 and 4 report the values of the parameters of S3 and S4, re-
spectively.
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Pi p q1 q2

S3
mimin−mimax+dimin−1

mimax
dimin−1 mimax − dimin−1

S3 mimax − dimin mimin(mimax −

dimin + 1)−mimax

mimax −

mimin(mimax − dimin)

SI
3 dimin − 1 mimindimin −mimax+1 mimax+1 −

mimin(dimin − 1)

S3

I mimin−1−dimin

mimax
mimax − dimin dimin

Table 3: Parameters of S3.

Pi p q

S4
mimin−mimax+1+1

mimax+1
mimax+1 − 2

S4 mimax − dimin−1 − 1 mimin−1 − 2

SI
4 dimin − 1 mimin − 2

S4

I mimin−dimin

dimin+1
dimin − 1

Table 4: Parameters of S4.

Summarizing, we derive a set of conditions, each one univocally identifying
a different graph Pi of type either S3 or S4. All these sets are listed in
Table 5. So, for example, when in the algorithm COND. S3 must be
checked, we require to verify that condition α is true, and mimin−1 = 1,
dimin = 1, p ≥ 1, q1 ≥ 2 and q2 ≥ 1 are also all true.

Pi Conditions

S3 α mimin−1 = 1 dimin = 1 p ≥ 1 q1 ≥ 2 q2 ≥ 1

SI
4 α mimin−1 = 1 dimin > 1 p ≥ 1 q ≥ 1 -

S4 α mimin−1 > 1 dimin−1 ≥ mimin−1 p ≥ 1 q ≥ 1 -

S3

I
α mimin−1 > 1 dimin−1 < mimin−1 p ≥ 1 q1 ≥ 2 q2 ≥ 1

SI
3 β mimax = 1 mimax+1 > mimin p ≥ 1 q1 ≥ 2 q2 ≥ 1

S4 β mimax = 1 mimax+1 < mimin p ≥ 1 q ≥ 1 -

S4

I
β mimax > 1 dimin < mimin p ≥ 1 q ≥ 1 -

S3 β mimax > 1 dimin ≥ mimin p ≥ 1 q1 ≥ 2 q2 ≥ 1

Table 5: Set of conditions for the recognition of components S3 and S4.

• Pi = S2(p1, q1; . . . ; pt, qt)
In this case x+1 boxes are involved, where x is a not null integer variable.
Again, these boxes can be either the first one and the last x or the first
x and the last one. More precisely, when Pi is either S2 or S2

I , boxes
with indices imax, imin− x+ 1, . . ., imin are involved and we have that

mimax ≥ mimin. When Pi is either S2 or S2

I
, boxes with indices imax,
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. . ., imax + x − 1, imin are involved and mimax ≤ mimin. Observe that
when mimax = mimin then x = 1 and the two cases collapse as S2 = SI

2

and S2 = S2

I
.

Analyzing the degree sequences of graph S2, we derive the values of pi
and qi, i = 1, . . . x, summarized in Table 6. Furthermore, we find a set
of conditions, each one univocally identifying a different graph Pi of type
S2. All these sets are listed in Table 7.

Pi pi qi

S2 di − n+mimin + 1 mi

S2

I
n− 1− dx−i+1 mx−i+1

S2 mimax − dimin−i+1 mimin−i+1

SI
2 dimin−x+i mimin−x+i

Table 6: Parameters of S2. Index i varies between 1 and x.

Pi Conditions

mimax ≤ mimin mimin =
∑x

i=1
mi(di − n+mimin + 1)

S2 dimin = 1 pi, qi ≥ 1

mimax ≥ mimin mimax =
∑imin

i=imin−x+1
mi(mimax − di)

S2 dimax = n− 2 pi, qi ≥ 1

mimax ≥ mimin mimin =
∑x

i=1
mi(n− 1− di)

SI
2 dimax = n−

∑imin

i=imin−x+1
mi pi, qi ≥ 1

mimax ≤ mimin mimin =
∑x

i=1
mi(n− 1− di)

S2

I
dimin =

∑x

i=1
mi − 1 pi, qi ≥ 1

Table 7: Set of conditions for the recognition of components S2.

Let us now explain how to determine x. Without loss of generality, let us
assume that mimax ≤ mimin: the other case can be treated analogously.
Let us start from the set of conditions that individuate graph S2 (table
7). At the beginning we check whether all the conditions in the set are
verified with x = 1. If it is so, S2 has been found; otherwise, if the sum is
smaller than mimin but all the other conditions hold, we increment x and
check the set of conditions again. This loop stops when the sum becomes
greater than or equal to mimin. If the equality holds, S2 has been found,
otherwise, we deduce that the component cannot be an S2 and we move

to check next set of conditions (i.e. that one individuating graph SI
2 ). If

also this graph cannot be individuated, then we conclude that the current
component is not an S2.
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5.3 Correctness and complexity

We conclude this section showing that algorithm Pruning-Unigraphs correctly
recognizes if G is a unigraph, and red/black edge color it. Moreover, we show
that the algorithm runs in linear time.

Theorem 6 Algorithm Pruning-Unigraphs produces a red/black edge coloring
of G if and only if G is a unigraph.

Proof: Conditions of steps 1, 2, 3 and 4 of the algorithm are mutually exclusive,
so at each iteration only one step may occur.

Checking the first p and the last q boxes of the degree sequence it is possible
to recognize each piece Pi of the split component F (cf. item (i) of Theorem 5),
if it exists. Item (iii).a. of Theorem 5 identifies all the components of F for a
unigraph and the conditions listed in Subsection 5.2 univocally determine each
component and indicate the values of p and q for each component in terms of
boxes.

Item (iii).b. of Theorem 5 guarantees that the pruning operation can be iter-
atively applied. Indeed, the algorithm, at each step, red-colors and eliminates a
complete piece Pi and all the edges connecting Pi to Pj , for j = i+1, . . . , z that
will be black-colored at the end; hence, if the original graph G is a unigraph, the
reduced graph G−Pi is a unigraph, too as for it Theorem 5 holds. Finally, the
crown, if it exists, is specified by item (ii) of Theorem 5 and by the conditions
in Subsection 5.2, and is red-colored. The correctness of the algorithm follows.

�

Theorem 7 Algorithm Pruning-Unigraphs runs in O(n) time.

Proof: Each indecomposable component Pi involves a certain number of boxes
ri, 1 ≤ ri ≤ r and

∑
ri = r, where the sum is performed over all the found

indecomposable components. Observe that all the indecomposable components,
except S2 (and its complement, its inverse and the inverse of its complement)
involve a constant number of boxes (either 1 or 2 or 3). From the other hand,
determining x, and hence recognizing S2 as explained at the end of Subsection
5.2, takes time Θ(x). Since the recognition of component S2 is executed as last
possibility, it follows that the recognition of each indecomposable component
Pi, involving ri boxes, always takes Θ(ri) time. Also the update of the degree
sequence can be run in the same time provided that a clever implementation
is performed. Indeed, in Algorithm Pruning-Unigraphs, it is not necessary
to update at each step the degree sequence as we do in order to highlight the
pruning technique: instead, it is enough to keep an integer variable prune and
to check conditions on (di− prune) instead of di in order to guarantee that no
additional time is used to prune the sequence. Hence the algorithm recognizes
if G is a unigraph in time Θ(

∑
ri) = Θ(r) = O(n). �
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6 Conclusions

In this paper we have presented a linear time algorithm for recognizing unigraphs
exploiting a new characterization for these graphs that generalizes a known
characterization for matrogenic graphs. It partitions the vertex set and the
edge set into three and two disjoint sets, respectively, detecting two particular
graphs whose superposition generates the given unigraph.

As we have already observed, the proof of the known characterization for
matrogenic graphs is based on the hereditary property, that holds for matrogenic
graphs but not for unigraphs; so, we have weakened our requirements proving
that only some special subgraphs of a unigraph are still unigraphs. This is the
picklock of the proof of our characterization.

We are convinced that the results presented in this paper can be helpful to
solve some of those problems that are NP-hard in general, polynomially solved
for subclasses of unigraphs and still unknown for unigraphs. This will be a
future direction of our work.
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