
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 9, no. 1, pp. 7–18 (2005)

Drawing Graphs Within Graphs

Paul Holleis

Ludwig-Maximilians-Universität München, Germany
http://www.hcilab.org/paul/

paul@hcilab.org

Thomas Zimmermann

Universität des Saarlandes, Saarbrücken, Germany
http://www.st.cs.uni-sb.de/∼zimmerth/

zimmerth@cs.uni-sb.de

Daniel Gmach

Technische Universität München, Germany
http://www-db.in.tum.de/∼gmach/

daniel.gmach@in.tum.de

Abstract

The task of drawing subgraphs is often underestimated and they are
simply emphasized using different colors or line styles. In this paper, we
present an approach for drawing graphs within graphs that first produces
a layout for the subgraphs thus increasing their locality. We introduce
connection sets stressing relationships between several subgraphs. In a
case study, we demonstrate how they can be used to visualize connections
between many small network motifs.

This paper is based on a submission to the Graph Drawing Con-
test 2003 “Drawing Graphs within Graphs” [5]. The intent of the contest
was to encourage research concerned with layouts of subgraphs.

Article Type Communicated by Submitted Revised
regular paper G. Liotta January 2004 July 2005



P. Holleis et al., Drawing Graphs Within Graphs, JGAA, 9(1) 7–18 (2005) 8

1 Introduction

Graphs play an important role in many fields of research and economy, as well
as in day-to-day life. They are often huge and complex structures that are
difficult to understand. Subgraphs are a powerful tool for reducing complexity
and emphasizing particular aspects. However, the handling of subgraphs is still
not a prominent topic in graph drawing. Often subgraphs are not considered
for the layout of the entire graph (even if they are known in advance), and
only highlighted afterwards. For simple subgraphs this approach suffices but for
complex subgraphs their structure is lost.

There are software packages that support the specification of subgraphs and
consider them in one way or the other during the layout process, for instance the
yEd tool [12]. However, most drawings with standard algorithms (like spring
embedder methods, etc.) clutter the drawing with edges thus obscuring impor-
tant information. In contrast, we build on a reduction of the number of edges,
a sophisticated placement of subgraphs, and the possibility to choose different
algorithms for different parts of the graph. This allows us to give a pleasing lay-
out of the graph that includes good drawings for each subgraph and stresses the
relationships between them. In our approach, we lay out all subgraphs before
the entire graph. Thus, subgraphs are easier to spot as their locality is in-
creased. For a single subgraph this is straightforward, therefore we concentrate
on several subgraphs that are known in advance.

The remainder of this paper is organized as follows. In Section 2 we formalize
our approach in general. Section 3 and 4 present a specialized layout algorithm
for emphasizing connections between subgraphs. In Section 5, we apply the
idea to many similar subgraphs. We close with a discussion of our approach in
Sections 6 and 7.

2 General Approach

First, we present a generic framework for emphasizing multiple subgraphs within
one graph, to be able to deal with different tasks and different graphs. Later
we will specialize this framework and introduce applications for it.

Create a Summary Graph. In the first step, we create a graph in which each
subgraph Hi is represented as a single vertex. We refer to this graph as the
summary graph GS = (VS , ES). The mapping between the original graph
G and GS is obtained by two functions fV : V → VS and fE : E → ES .
Note, that fV and fE may also be used to combine vertices and edges that
are not part of a subgraph.

Lay out the Subgraphs and the Summary Graph. After having created
the summary graph, we first lay out the subgraphs and then the summary
graph. All graphs are laid out independently. That means that different
layout algorithms may be used. If possible, the layout algorithm for the
summary graph should use information about the size of the subgraphs.



P. Holleis et al., Drawing Graphs Within Graphs, JGAA, 9(1) 7–18 (2005) 9

(a) Original graph. (b) Summary graph.

(c) Subgraphs laid out. (d) Summary graph laid out.

Figure 1: Phases of the general approach.

Combine the Layouts of Subgraphs and Summary Graph. In the next
step, we combine the layouts of the subgraphs and the summary graph
to a layout of our representation of the original graph. This is done by
replacing vertices that represent a subgraph by the layout of the respective
subgraph. The mapping between the original graph and the summary
graph can be restored using f−1

V and f−1
E . 1

Optimize the Layout. The resulting layout is not optimal. In a final fine-
tuning step we try to reduce the number of crossings and the required
space of the layout.

Basically, our summary graphs are special cases of X-Y-graphs [2]. X denotes
the structure of an X-Y -graph, and Y the property of some of its nodes. The
particular restrictions on Y for a summary graph depend on each individual
case.

We demonstrate the approach described above with one of the graphs of
the Graph Drawing Contest 2003. The graph represents a social network that

1Note that f−1
V and f−1

E are relations and not functions.



P. Holleis et al., Drawing Graphs Within Graphs, JGAA, 9(1) 7–18 (2005) 10

evolved from an analysis of organizations involved in drug policy making. The
network is an undirected graph where vertices represent organizations and the
existence of informal communication chains is mirrored by edges between them.
Since the collection of such data always implies uncertainty, confirmed relations
are given precedence over others.

Figure 1(a) on the preceding page shows this graph, highlighting the con-
firmed edges using bold arcs. With some effort, one can see that the subgraph
induced by confirmed relations consists of three connected components. How-
ever, neither the structure of the subgraph nor its relationship with the graph
can be seen. That is why we decided to use the three components as three
subgraphs. The graph is transformed into the summary graph in Figure 1(b).

In Figure 1(c) the subgraphs are laid out individually. For each, a spring
embedder modeled after the Kamada-Kawai scheme is used for that [8]. An
additional force from a circular boundary of each graph is applied to make
them take up less space when surrounded by a circle as shown for instance in
Figure 1(c). This can be done by temporarily adding a node in the center of
the graph and connecting this node with all nodes of the graph.

Finally, the summary graph is laid out and all subgraphs are embedded in
its layout in Figure 1(d). Note that the size of the subgraphs has been taken
into account for the layout of the summary graph. This will be described in
more detail later in Section 4.

This framework assumes that all subgraphs are disjoint. However, there are
three possible solutions to cope with subgraphs that share nodes:

• Overlapping subgraphs can be combined into a new subgraph. This of
course reduces the amount of information present in the choice of sub-
graphs.

• Vertices contained in several subgraphs can be duplicated, creating disjoint
subgraphs. Edges incident to such nodes can either be duplicated as well
or split into disjoint sets. This requires labeling those nodes in a way such
that copies can be recognized.

• Subgraphs can be partitioned in overlapping and non-overlapping parts.
Each part is then considered a separate subgraph.

Our approach works with multigraphs or self loops, provided that the algorithms
used to draw the different parts of the layout can cope with those.

3 Connection Sets

Given multiple subgraphs, an interesting aspect is the relationship between
them. We present a layout algorithm that emphasizes these relations by identi-
fying connection sets. A connection set for some subgraphs contains all vertices
that are reachable from each subgraph without visiting vertices of any other
subgraph



P. Holleis et al., Drawing Graphs Within Graphs, JGAA, 9(1) 7–18 (2005) 11

Definition: Let G = (V,E) be an undirected graph, and H1 = (V1, E1), . . . ,
Hn = (Vn, En) be subgraphs of G. The remainder sets are VR = V −

⋃
Vi and

ER = E −
⋃

Ei with i ∈ {1, . . . , n}. A connection set is defined as follows:

C{i} = { v | ∃u ∈ Vi, {w1, . . . , wk, v} ⊂ VR,
∃path u → w1 → · · · → wk → v}

CI =
⋂
i∈I

C{i} 2

Note that the definition above allows vertices to be in more than one connection
set. For example, if a vertex connects subgraphs H1, H2 and H3 it is contained
in seven connection sets C{1}, C{2}, C{3}, C{1,2}, C{1,3}, C{2,3}, and C{1,2,3}.
For layout purposes it serves better if such a vertex is contained in one set only.
Therefore we define exclusive connection sets in which this vertex, e.g., would
only be contained in the set Ce

{1,2,3}.

Definition: Let CI be connection sets of an undirected graph G. We define an
exclusive connection set as:

Ce
I = CI −

⋃
i∈{1,...,n}, i/∈I

C{i} 2

We can now use (exclusive) connection sets to create a layout that emphasizes
subgraphs and their relationships to each other. For this we define the summary
graph first.

Definition: Let Hi = (Vi, Ei) with i ∈ {1, . . . , n} be n subgraphs of a graph
G = (V,E). We define a summary graph based on connection sets as GS =
(VS , ES) with

VS ={ vs | ∃v ∈ V with vs = fV (v)}
ES ={ es | ∃e ∈ E with es = fE(e)}

where

fV (v) =

{
vi if v ∈ Hi

v else

fE

(
{u1, u2}

)
=

{
fV (u1), fV (u2)

}
for u1, u2 ∈ V

2

4 Layout of the Summary Graph

For the layout of the summary graph we assume that the subgraphs have been
laid out in some way and surround those layouts with an ellipse.2 These ellipses
are placed on a circle, taking their size into account. For this, we calculate the
(approximate) part of the perimeter that each ellipse will need on the circle.

2Other geometrical objects might fit better for specific layouts of the subgraphs but this
would complicate their placement with respect to each other.



P. Holleis et al., Drawing Graphs Within Graphs, JGAA, 9(1) 7–18 (2005) 12

Then we place each ellipse and move the subgraphs along with their bounding
ellipse. The connection sets Ce

I are put around and between the subgraphs,
helping to minimize overlapping of vertices and edge crossings.

Figure 2(a) illustrates one possible layout for a graph with three subgraphs
H1, H2 and H3. For layouts including up to three subgraphs the placement of
connections sets does not pose any problems. Although this approach does not
seem to scale well with a higher number of subgraphs, it is unlikely that all 2n

connecting sets really show up in the final layout. For example in thin graphs,
many connection sets will be empty; in Figure 2(b) we show such a layout for
four subgraphs where not all connection sets exist. We use this layout later in
the drawing of a biological network in Section 5.2.

(a) Three subgraphs. (b) Four subgraphs.

Figure 2: Placement of subgraphs and connection sets.

For dense graphs, we can concentrate on non-exclusive connection sets con-
necting one, two or all n subgraphs. This reduces the total number of possible
connection sets to n2+n

2 + 2 and can then be drawn in a similar fashion to Fig-
ure 2(a). For many graphs these non-exclusive connection sets are sufficient.

5 Case Study: Network Motifs

This section applies the general approach presented in Section 2 and the con-
nection sets of Section 3 to a larger graph and a high number of subgraphs.

5.1 The Challenge: A Biological Network

We will demonstrate our algorithm on a biological network representing the
transcriptional regulation of Escherichia coli. The graph consists of 423 labeled
vertices and 578 edges. It is shown in Figure 3(a), drawn using a standard
spring embedder algorithm [3]. Basically, the vertices represent elements that



P. Holleis et al., Drawing Graphs Within Graphs, JGAA, 9(1) 7–18 (2005) 13

interact with each other. These interactions are modeled by edges that carry
information on the type of interaction. For a detailed description on this graph
and its interpretation we refer to [9].

As subgraphs we will use motifs—introduced in [11]. A motif describes small
subgraphs that need not necessarily be isomorphic to each other but all match
a specific pattern. In biological research, the frequent recurrence of such motifs
gives insight into the order of some events and helps to get an overall view of
the system, collapsing information that may be spread throughout the whole
network into a few nodes.

We will focus on the large connected component of the biological network and
leave small components aside. Additionally, we will concentrate on the single
input module motif (SIM) adopted from [9]. A SIM is a tree of height one
where all leaves have exactly one directed in-edge each emerging from one and
the same parent node. All nodes may have additional out-edges and self loops,
the parent node also may have in-edges as well. The idea behind this motif is
that several elements are controlled by one single element called a transcription
factor. A search for this pattern in our component of the biological network
identified 25 appearances of SIMs. They can be recognized in Figure 3(a) by
their fan-outs.

5.2 Layout of the Biological Network

We use the 25 identified SIMS as subgraphs for our summary graph. Since the
biological network is quite large, we replace the individual subgraphs with a
motif-specific geometric shape. This allows us to distinguish between original
vertices and vertices representing motifs as well as between several motifs. For
the SIM motif, a triangle has been chosen, representing the transcription factor
on top that controls several elements below. Figure 3(b) shows a version of the
summary graph laid out using the same spring embedder as before.

Applying the connection set method of Section 3 turns out not to be feasi-
ble. The number of possible connection sets can be up to 225. As mentioned
before, the actual number of non-empty connection sets is much smaller: In our
case there are 36 non-empty exclusive connections sets. Eleven of these have
been connected to exactly one SIM, another eleven to exactly two SIMs and
13 to more than two SIMs. There are no vertices connected to all SIMs. It is
still hardly possible to provide a neat layout for those 25 subgraphs and their
connection sets. Therefore, we decided to pursue another direction to cope with
such a large graph.

Instead of taking each single motif as a subgraph, we combine SIMs. As
Figure 3(b) indicates, the SIMs induce a subgraph. This subgraph consists of
four connected components. We will visualize the connections between these
four components. The justification is that an analyst interested in the occur-
rence of motifs will very probably be interested in the connections between those
subgraphs as well.

Figure 4 on page 15 shows one possible layout resulting from that scenario.
This layout also points out one of the strengths of our approach: All those



P. Holleis et al., Drawing Graphs Within Graphs, JGAA, 9(1) 7–18 (2005) 14

(a) Network drawn with a spring embedder [4].

(b) Network drawn with a spring embedder [4] and highlighted SIMs.

Figure 3: Different layouts of a biological network.



P. Holleis et al., Drawing Graphs Within Graphs, JGAA, 9(1) 7–18 (2005) 15

Figure 4: Layout of the biological network using connection sets.

Figure 5: Optimized layout of the biological network using connection sets.



P. Holleis et al., Drawing Graphs Within Graphs, JGAA, 9(1) 7–18 (2005) 16

parts of the graph can be laid out using algorithms chosen individually for each
particular instance. In fact, we applied several different methods to create the
final layout which we present in Figure 4:

• Components up to four vertices have been placed equidistantly on a line.

• A spring embedder has been applied to the subgraph on top and the central
connection sets.

We implemented a spring embedder that does not change the position
of nodes with a particular property. Thus, the summary nodes can be
included in the layout process without getting moved. This untangles the
connection sets and helps to ensure that nodes from the connection set
that have edges to a summary node are place closer to (i.e., in sight with)
this summary node, thus avoiding edges from crossing the connection set.
We again used the trick to place one or more temporary nodes at a central
point (connected to all nodes in the connection set) to prevent the graph
from being stretched too much towards the summary nodes.

• Finally, for the connection set topping the large component, we chose a
pincushion algorithm that works particularly well for thin graphs where
most of the vertices are connected to one central vertex. In this case, there
are 73 loosely connected vertices all sharing an edge with the summary
node. For dense graphs we suggest using more sophisticated methods for
ordering nodes or use splines and bends instead of straight lines.

The recursive pincushion algorithm takes a central node (initially the sum-
mary node) and neighbor nodes (initially the complete connection set) as
input. It places all neighbor nodes equidistantly on a segment (initially a
semi-circle) around the central node.

To reduce the number of edge crossings we use a heuristic that puts nodes
that are connected in the same or later layers close together: From each
node n we find all nodes that are in the same connected component and
layer as n and place them next to n. Of course the central node is seen as
a separator since otherwise all nodes would be connected to each other.

Additionally, we place the nodes that are on the same layer alternately
with three slightly different distances. This enables us to place more nodes
side to side without overlapping.

The algorithm is called recursively for each placed node n as central node
and the unplaced nodes in the component of n as neighbors. The radius
and the size of the segment decreases in each recursion step. Processed
nodes are marked so that no node is used twice.

5.3 Optimization for Large Connecting Sets

For large graphs with many edges between connection sets and summary nodes,
the notion of a summary graph can be extended: The connection sets are con-
sidered components and put into (or replaced by) a summary node themselves.



P. Holleis et al., Drawing Graphs Within Graphs, JGAA, 9(1) 7–18 (2005) 17

Edges incident to a vertex within a connection set are redirected to the corre-
sponding summary node. Although this discards a fair amount of information,
it considerably reduces the number of edges in the final layout and therefore
increases readability.

Additionally, as the connection sets have lost many edges their structure
is much more apparent and can be laid out more concisely. We used a stan-
dard spring embedder for these layouts. The optimized layout of our biological
network is shown in Figure 5.

6 Limitations

There are situations where our approach produces undesirable results, because
considering subgraphs for the layout of entire graphs is not always reasonable.
As an example take a subway network as the graph, and a path between two
places as the subgraph. Drawing the subgraph first, and the subway network
afterwards is not a good idea. First, the vertices of the connection will probably
be laid out on a single line or in a circle. And second, the viewer will lose
orientation, because the layout does not match his or her mental map, which
is influenced by the geographical distribution of the vertices. The mental map
could be restored by enriching the subgraph with additional information about
its environment or using graph animation.

7 Conclusion

We presented an approach for emphasizing subgraphs within graphs. Addition-
ally, we described two applications for our approach: One for visualizing connec-
tions between subgraphs, and one for highlighting many similar subgraphs. In a
final step we combined both techniques. We implemented the ideas presented in
this paper and integrated them within a graph editor called Gravisto [1, 6]. The
Gravisto platform has been developed at the University of Passau, Department
of Computer Science.

A particular strength of our method is that the choice of algorithms used
to find good layouts for each subgraph and connection set is entirely free for
each application. Therefore we suggest to use frameworks like QUOGGLES [7]
where all algorithms that produce the final layout are shown in the order of
their execution. QUOGGLES allows to easily replace one layout algorithm with
another without having to change any code at all.

Acknowledgments

We thank Prof. Dr. Franz J. Brandenburg, University of Passau, for the organi-
zation of the Graph Drawing Contest 2003 and for his constructive comments
earlier versions of this paper. We thank the referees for their valuable comments.



P. Holleis et al., Drawing Graphs Within Graphs, JGAA, 9(1) 7–18 (2005) 18

References

[1] C. Bachmaier, F.-J. Brandenburg, M. Forster, P. Holleis, and M. Raitner.
Gravisto: Graph visualization toolkit. In Pach [10], pages 502–503.

[2] F. J. Brandenburg. Graph clustering 1: Cycles of cliques. In Proceedings
of the Graph Drawing 1997, volume 1353 of Lecture Notes in Computer
Science, Berlin, Germany, 1997. Springer.

[3] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Al-
gorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs,
N.J., 1999.

[4] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software–Practice and Experience, 21(11):1129–1164, 1991.

[5] Graph Drawing Contest 2003. http://www.infosun.fmi.uni-passau.
de/br/lehrstuhl/GraphDrawing/GD2003/contest.html.

[6] Gravisto Project Homepage. http://www.gravisto.org/.

[7] P. Holleis and F.-J. Brandenburg. QUOGGLES: Query on graphs - a graph-
ical largely extensible system. In Pach [10], pages 465–470.

[8] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information Processing Letters, 31(1):7–15, 1989.

[9] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs in the transcriptional regulation network of Escherichia coli.
Nature Genetics, 31:64–68, 2002.

[10] J. Pach, editor. Graph Drawing, 12th International Symposium, GD 2004,
New York, NY, USA, September 29–October 2, 2004, Revised Selected Pa-
pers, volume 3383 of Lecture Notes in Computer Science. Springer, 2004.

[11] S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs: Simple
building blocks of complex networks. Science, 298:824–827, 2002.

[12] yEd Java Graph Editor. http://www.yworks.com/en/products_yed_
about.htm.


